threedb.utils

threedb.utils.str_to_dtype(dtype_str: str)torch.dtype
class threedb.utils.CyclicBuffer(buffers: Optional[Dict[str, Tuple[List[int], str]]] = None, size: int = 1001, with_tqdm: bool = True)

Bases: object

A concurrent cyclic buffer with reference counting to store the result and avoid copying them to every sub process.

__init__(buffers: Optional[Dict[str, Tuple[List[int], str]]] = None, size: int = 1001, with_tqdm: bool = True)None

Initialize self. See help(type(self)) for accurate signature.

declare_buffers(buffers: Dict[str, Tuple[List[int], str]])bool
free(ind: int, reg_id: int)
register()
process_events()
next_find_index()int
allocate(data: Dict[str, torch.Tensor])
close()
threedb.utils.overwrite_control(control: threedb.controls.base_control.BaseControl, data: Dict[str, Union[Tuple[float, float], List[Any]]])
threedb.utils.init_control(cfg: Dict[str, Any], root_folder: str)
threedb.utils.init_policy(description)
threedb.utils.load_inference_model(args)